

11 класс XXIX Межрегиональная олимпиада школьников им. И.Я. Верченко по математике и криптографии

1 вариант

1. Известно, что p, p_1 , p_2 , p_3 — различные простые числа, и $p^3 - 2p^2 - 16p = p_1 \cdot p_2 \cdot p_3 - 32$. Найдите все такие числа p, p_1 , p_2 , p_3 . Ответ обоснуйте.

Решение: Пусть $p_1 < p_2 < p_3$. По условию $p^3 - 2p^2 - 16p + 32 = p_1 \cdot p_2 \cdot p_3$. Разложим левую часть на множители:

$$(p-2)(p-4)(p+4) = p_1 \cdot p_2 \cdot p_3. \tag{1}$$

Непосредственной проверкой убеждаемся, что $p \neq 2,3,5$. Значит p > 5. Следовательно, числа в левой части (1) различны и отличны от 1. Поэтому $p - 4 = p_1$, $p - 2 = p_2$, $p + 4 = p_3$. Поскольку p на 3 не делится, возможны случаи:

- число p при делении на 3 дает остаток 1. Тогда на 3 делится число p-4. Такое возможно только, когда p-4=3, так как число p-4 простое. Отсюда p=7, $p_1=3$, $p_2=5$, $p_3=11$.
- число p при делении на 3 дает остаток 2. Тогда на 3 делится p+4. Значит p+4=3, что невозможно.

Ответ: p = 7, $p_1 = 3$, $p_2 = 5$, $p_3 = 11$ (при условии $p_1 < p_2 < p_3$).

2. Для зашифрования осмысленного слова его буквы переводят в числа x_1, x_2, \ldots, x_n по таблице. Затем выбирают натуральные числа x_0 и k. Далее число x_0 приписывают в начало последовательности x_1, x_2, \ldots, x_n , а число $x_{n+1} = x_0 + 19^{n+4}$ (где n — длина слова) — в ее конец. Получившаяся в результате последовательность

 $x_0, x_1, \ldots, x_n, x_{n+1}$ затем преобразуется в последовательность $y_0, y_1, \ldots, y_n, y_{n+1}$ по формуле $y_i = r_{32}(x_i + 6x_i \cdot k^3 + k), \quad i = 0,1,\ldots,n+1$, где $r_{32}(a)$ — остаток от деления числа a на 32. Затем числа $y_0, y_1, \ldots, y_{n+1}$ заменяют буквами согласно таблице. В результате получили вот что: **КЙЫЦНБНЦ**Л. Какое слово было зашифровано?

A	Б	В	Γ	Д	ΕË	Ж	3	И	Й	К	Л	M	Н	О	П	P	C	T	У	Φ	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Решение: Нетрудно понять, что длина слова n = 7, а также несложно найти остаток

$$r_{32}(19^{11}) = 11.$$

Преобразуем зашифрованный текст в последовательность чисел:

$$y_0 = 10$$
, $y_1 = 9$, $y_2 = 27$, $y_3 = 22$, $y_4 = 13$, $y_5 = 1$, $y_6 = 13$, $y_7 = 22$, $y_8 = 11$.

Из условия следует, что $x_8 - x_0 = 11$. Рассмотрим разность $r_{32}(y_8 - y_0) = r_{32}(x_8 + 6x_8 \cdot k^3 + 6x_8 \cdot k^3$

$$k - x_0 - 6x_0 \cdot k^3 - k$$
 = $= r_{32}((1 + 6k^3) \cdot (x_8 - x_0)) = r_{32}(11 \cdot (1 + 6k^3)).$

Имеем:

$$r_{32}(11 \cdot (1+6k^3)) = 1.$$

Заметим, что $r_{32}(3 \cdot 11) = 1$. Откуда находим $r_{32}(1 + 6k^3) = 3$. Значит, $1 + 6k^3 = 3 + 32t \Leftrightarrow 3k^3 = 1 + 16t \Leftrightarrow 33k^3 = 11 + 11 \cdot 16t$ Значит, $r_{16}(33k^3) = r_{16}(k^3) = 11$. В итоге $k^3 = 11 + 16p$.

При p=1 получим $k^3=27$. Отсюда k=3. Опробуем полученное значение. Согласно правилу зашифрования

$$y_1 = 9 = r_{32}(x_1 + 6x_1 \cdot 27 + 3) = r_{32}(x_1 \cdot 3 + 3),$$

$$\Leftrightarrow 3x_1 + 3 = 9 + 32t \Leftrightarrow 3x_1 = 6 + 32t$$
T.e. $r_{32}(3x_1) = 6 \Rightarrow r_{32}(x_1) = 2$. Продолжая дальше получим:
$$y_2 = 27 = r_{32}(x_2 + 6x_2 \cdot 27 + 3) = r_{32}(x_2 \cdot 3 + 3),$$

$$\Leftrightarrow 3x_2 + 3 = 27 + 32t \Leftrightarrow 3x_2 = 24 + 32t$$
T.e. $r_{32}(3x_2) = 24 \Rightarrow r_{32}(x_2) = 8$. В итоге получим

Ответ: ВИСОКОС.

3. Каждому из четырех абонентов A_1 , A_2 , A_3 , A_4 надо выдать по два уравнения вида aw + bx + cy + + dz = t, где a, b, c, d, t, w, x, y, $z \in \{0,1\}$. Значения секретных битов w, x, y, z одинаковы для всех абонентов и им заранее неизвестны. Приведите хотя бы один пример уравнений, которые надо выдать этим четырем абонентам, чтобы каждая пара $\{A_1, A_3\}$, $\{A_1, A_4\}$, $\{A_2, A_3\}$ могла достоверно вычислить w, x, y, z, но чтобы при этом: 1) ни одна другая пара абонентов не могла бы достоверно вычислить более одного секретного бита; 2) ни один абонент в одиночку не был в состоянии достоверно вычислить даже один секретный бит. Например, если абонент A_1 получит уравнения $\{w + x + y + z = 1; w + x + 0 \cdot y + 0 \cdot z = 1\}$, а $A_2 - \{w + 0 \cdot x + y + 0 \cdot z = 0; w + x + 0 \cdot y + + z = 0\}$. Тогда, объединившись, из имеющихся в их распоряжении четырех уравнений они однозначно найдут, что w = 1, x = 0, y = 1, z = 1. При этом будем говорить, что пара абонентов $\{A_1, A_2\}$ может достоверно вычислить секретные биты w, x, y, z. Здесь традиционно полагается, что 1+1=0.

Решение: Пусть w_0 , x_0 , y_0 , z_0 — значения секретных битов w, x, y, z. Решим прежде задачу, предполагая, что все секретные биты равны нулю: $w_0 = x_0 = y_0 = z_0 = 0$. Затем в уравнениях можно будет сделать замену $w \to w + w_0$, ..., $z \to z + z_0$ и тем самым получить решение задачи в общем случае.

Запишем теперь какую-нибудь систему из четырех уравнений, которой удовлетворяют *только* нулевые значения. Например,

$$w + x = 0$$
 (1) $y + z = 0$ (3)

$$x + y = 0$$
 (2) $w + x + y = 0$ (4)

Запишем еще одно уравнение, сложив эти четыре:

$$x + y + z = 0 \tag{5}$$

Система из *любых* четырех уравнений из набора (1) - (5) имеет только нулевое решение. Далее идея в следующем. Если пара абонентов должна уметь находить все биты, то этой паре выдадим четыре *различные* уравнения из набора (1) - (5), если же нет, то хоть одно уравнение у этой пары должно быть общим.

Замечание. Здесь нет четких алгоритмов и успех заранее не гарантирован. Возможно, следовало выбрать какие-то другие уравнения (1) - (4). Заметим, например, что абонентам, которые не должны уметь находить секрет, нельзя выдать уравнения (1), (2) и (4), так как значение бита z они не найдут, но определят, что w = x = y = 0, а это по условию недопустимо. Никакому абоненту нельзя выдать уравнения (2) и (5), так как из них следует, что z = 0.

Абонентам раздать уравнения можно так: A_1 : (1), (2); A_2 : (1), (5); A_3 : (3), (4); A_4 : (4), (5). Выполнив замену, запишем ответ в общем случае. **Ответ**: Например,

$$A_1$$
: $w + x = w_0 + x_0$, $x + y = x_0 + y_0$; A_2 : $w + x = w_0 + x_0$, $x + y + z = x_0 + y_0$

$$y_0 + z_0;$$
 A_3 : $y + z = y_0 + z_0$, $w + x + y = w_0 + x_0 + y_0;$
 A_4 : $w + x + y = w_0 + x_0 + y_0$, $x + y + z = x_0 + y_0 + z_0.$

4. Саша решил отправить Маше записку. Для этого каждую букву сообщения он заменил комбинацией из 0 и 1 согласно таблице (A – 00000, Б – 00001, ..., Я – 11111). Взяв день "Д" и номер месяца "М" своего рождения Саша вычислил $u_1 = Д^2 + M^2$, $u_2 = Д \cdot M$, $u_3 = Д - M$. Далее Саша вычислил четвертое $u_4 = r_{32}(u_1 + u_2u_3)$, пятое $u_5 = r_{32}(u_2 + u_3u_4)$, ..., n-ое число $u_n = r_{32}(u_{n-3} + u_{n-2}u_{n-1})$, где $r_{32}(a)$ – остаток от деления числа a на 32. К i-му биту символу исходного сообщения (0 или 1) он прибавил число u_i и взял остаток от деления на 2. Полученную последовательность из 0 и 1 он вновь преобразовал в буквы по таблице и получил следующее сообщение: **ЖДУЛЩБШЛТВШЦЧ**. Помогите Маше прочитать его.

A	Б	B	T	Д	E	沤	3	11	n	K	JI	M	H	O	п	P	C	T	Y	d)	X	ц	ч	ш	щ	Ъ	ы	ь	3	ю	SI
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	D	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	0	1	D	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Решение: По условию числа u_k прибавляются к битам открытого текста, а результат заменяется остатком от деления на 2 (то есть на 0 или 1). Поэтому сразу заменим u_k его остатком от деления на 2: считаем, что $u_k = 0$ (если изначально u_k было четным) или $u_k = 1$ (если оно было нечетным). Вычисление остатка от деления на 32 при построении последовательности u_1, u_2, \ldots никакой роли не играет (четные числа дают четный остаток, а нечетные – нечетный).

Оказывается, в зависимости от четности чисел Π , M могут быть получены всего три различные последовательности $u_1, u_2, ..., a$ именно:

Числа Д, М нечетные. Тогда $u_1 = 0$, $u_2 = 1$, $u_3 = 0$, ...

Числа Д, М имеют разную четность. Тогда $u_1 = 1$, $u_2 = 0$, $u_3 = 1$, ...

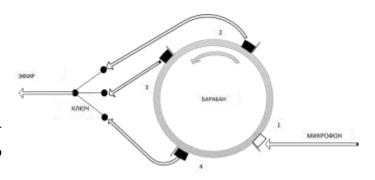
Числа Д, М четные. Тогда $u_1 = u_2 = \cdots = u_{32} = 0$. В этом случае текст Машиной записки остался бы без изменения, что, очевидно, не так.

Далее необходимо в первых двух случаях вычислить последовательность $\{u_n\}$ полностью, вычесть ее из зашифрованного текста (**3T**) и убедиться, что читаемый вариант получается во втором случае (см. таблицу).

osi y raci c		P	3025	() ()		777'							
	Ж	Д	У	Л	Щ	Б	Ш	Л	У	В	Ш	Ц	Ч
	00110	00100	10011	01011	11001	00001	11000	01011	10011	00010	11000	10110	10111
1. Д , М нечетные													
$\{u_n\}$	01001	00100	10010	01001	00100	10010	01001	00100	10000	01001	00100	10010	01001
$3T-u_n$	01111	00000	00001	00010	11101	10011	10001	01111	00011	01011	11100	00100	11110
	П	A	Б	В	Э	У	С	П	Γ	Л	Ь	Д	Ю
				2. ,	Д,М	разно	й четн	юсти					
$\{u_n\}$	10111	01110	11101	11011	10111	01110	11101	11011	10110	01110	11101	11011	10111
$3T-u_n$	10001	01010	01110	10000	01110	01111	00101	10000	00101	01100	00101	01101	00000
	C	К	O	P	O	П	Е	P	E	M	Е	Н	A

Ответ: СКОРОПЕРЕМЕНА

5. Звук записывается на магнитный слой барабана, который вращается с постоянной скоростью, совершая один оборот за 4 секунды. Рядом с барабаном по окружности через равные



расстояния размещены записывающая (1) и три

читающие головки (2), (3), (4). В каждый момент времени в телефонную линию передается сигнал с одной из читающих головок. Устройство спроектировано так, что каждый участок сигнала будет передан в линию один раз, а сама передача стартует, как только начало записи окажется у 3-й читающей головки. Сколько различных вариантов звука, переданного в линию, может получиться, если сообщение длилось 20 секунд?

Решение:

Решим задачу в общем случае, когда передача длилась n секунд. Так как переключение между читающими головками происходит раз в секунду, весь звук можно разбить на n фрагментов по 1 секунде и тогда звук, переданный в линию, будет перестановкой этих фрагментов. Обозначис количество возможных перестановок T(n).

Представим весь процесс в виде таблицы, элементами которой являются номера фрагментов. Например, на второй секунде, с которой начинается передача, на пишущей головке будет 3-ий фрагмент звука, 2-ой фрагмент будет на (2)-ой читающей головке, а 1-ый фрагмент на (3)-ей читающей головке. Передача закончится на n+1 секунде.

	Пишущая головка		Читающая	овка	В линию передан
Сек.			ГОЛ		
		(2)	(3)	(4)	
0	1	_	_	_	_
1	2	1	_	_	_
2	3	2	1	_	2или 1
3	4	3	2	1	3, 2или 1
4	5	4	3	2	4, 3или 2

n - 1	n	n – 1	n – 2	n-3	
n	_	n	n – 1	n – 2	
n + 1	_	_	n	n – 1	<i>n</i> или <i>n</i> – 1

На n+1 секунде в линию может быть передан n или n-1 фрагмент звука. По очереди рассмотрим оба случая.

1. Пусть на n+1 секунде в линию был передан n-ый фрагмент (см. таблицу). Тогда n-ый фрагмент не могбыть передан на предыдущей секунде. Если посмотреть на таблицу то видно, что количество перестановок

Читак	ощая го	ловка	В линию
(2)	(3)	(4)	
2	1	_	2 или 1

фрагментов в этом случае совпадает с $T(n-1)$, то есть	3	2	1	3, 2 или 1
количеством способов переставить звук длины $n-1$.	4	3	2	4,3 или 2
2. Пусть на $n + 1$ секунде в линию был передан ($n -$				
1)-ый фрагмент (см. таблицу). Тогда $(n-1)$ -ый	n	n-2	n-3	
фрагмент не мог быть передан на	- 1			
предыдущих секундах. Так как <i>п</i> -ый фрагмент	n	n - 1	n-2	n-1 или $n-$
должен уйти в линию, то он должен быть передан в				2
момент времени n . Тогда до $(n-1)$ -ой должно		n	n-1	n

быть передано (n-2) последовательных фрагментов, что может быть сделано T(n-2) способами.

Таким образом T(n) = T(n-1) + T(n-2). Тогда для нахождения количества перестановок T(n) для любого n, достаточно найти T(1), T(2).

T(1)=1	Чит	ающая гол	повка	В линию
1(1)-1	(2)	(3)	(4)	
	_	1	_	1
	Чит	ающая го.	повка	В линию
T(2)=2	(2)	(3)	(4)	
	2	1	1	2 или 1
	_	2	1	2 или 1

Остается с использованием формулы T(n) = T(n-1) + T(n-2) вычислить нужное значение.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181	6765	10946

Ответ. 10946

Решение: Для каждого набора $\mathbf{k} = (k_1, \dots, k_9)$ укажем такое минимальное l, что в соответствующей последовательности u_1, u_2, \dots, u_l присутствует каждое из чисел 0, 1 и 2. Затем среди всех таких l останется выбрать наибольшее — это и будет ответом в задаче.

- **1.** В наборе \boldsymbol{k} встречается каждое из чисел 0, 1 и 2. Тогда искомое l не превосходит 9.
- **2.** Набор k состоит только из 1. Тогда $u_{10} = \cdots = u_{17} = 2$ и $u_{18} = 0$. Значит l = 18;
- **3.** В наборе k присутствуют и 1, и 2, но нет 0. Значит среди чисел u_1, u_2, \ldots, u_9 есть два соседних (u_s и u_{s+1}), одно из которых равно 1, а другое 2. Тогда $u_{s+9} = 0$ и $l \le 17$;

- **4.** Набор k состоит из 0 и 1. Число 2 впоследствии дадут только две рядом стоящие
- 1. Поэтому рассмотрим варианты:
- а) в k есть рядом стоящие 1. Тогда l < 19;
- b) в k нет рядом стоящих 1. Здесь возможны следующие случаи:
 - Есть хоть одна 1 «не с краю». То есть найдется номер s такой, что $2 \le s \le 8$ и $k_s = 1$. Рядом стоящих 1 нет, поэтому $k_{s-1} = k_{s-1} = 0$. Тогда $u_{s+8} = u_{s+9} = 1$. Следовательно, $u_{s+17} = 2$ и $l \le 25$;

Отметим, что случаи, «k состоит только из 2» и «k состоит только из 0 и 2» эквивалентны случаям 2 и 4 соответственно. Действительно, если в последовательности $\{u_n\}$, отвечающей набору $2 \cdot k$, заменить все 2 на 1, а 1 на 2, то получится последовательность, соответствующая набору k.

Ответ: l = 27.